51,841 research outputs found

    Stress concentrations around voids in three dimensions : The roots of failure

    Get PDF
    Funding This work forms part of a NERC New Investigator award for DH (NE/I001743/1), which is gratefully acknowledged. Acknowledgments The authors would like to acknowledge the reviewers, Elizabeth Ritz and Phillip Resor. Their reviews were very constructive, both helping to improve the manuscripts consistency and highlighting a number of errors in the initial submission. The authors would also like to thank Lydia Jagger's keen eye and patience, she helped greatly in removing a number of grammatical errors from the initial draft.Peer reviewedPublisher PD

    Circular Dichroism of RbHe and RbN2_2 Molecules

    Full text link
    We present measurements of the circular dichroism of optically pumped Rb vapor near the D1 resonance line. Collisions with the buffer gases 3^3He and N2_2 reduce the transparency of the vapor, even when fully polarized. We use two methods to measure this effect, show that the He results can be understood from RbHe potential curves, and show how this effect conspires with the spectral profile of the optical pumping light to increase the laser power demands for optical pumping of very optically thick samples

    High Density Mesoscopic Atom Clouds in a Holographic Atom Trap

    Full text link
    We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.Comment: 4 pages, 4 figures, submitted to PR

    Predicting Big Bang Deuterium

    Get PDF
    We present new upper and lower bounds to the primordial abundances of deuterium and helium-3 based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95\% C.L.): 1.5×105(D/H)P10.0×1051.5 \times 10^{-5} \le (D/H)_P \le 10.0 \times 10^{-5} and (3He/H)P2.6×105(^3He/H)_P \le 2.6\times 10^{-5}. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95\% C.L. bound on the primordial abundance of deuterium: (D/H)best=(3.51.8+2.7)×105(D/H)_{best} = (3.5^{+2.7}_{-1.8})\times 10^{-5}. Measurements of deuterium absorption in the spectra of high redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of helium-4 and lithium-7 are discussed, as well as those for the universal density of baryons.Comment: Revised version of paper to reflect comments of the referee and reply to suggestions of Copi, Schramm, and Turner regarding the overall analysis and treatment of chemical evolution of D and He-3. Best-fit D/H abundance changes from (2.3 + 3.0 - 1.0)x10^{-5} to (3.5 +2.7 - 1.8) x10^{-5}. See also hep-ph/950531

    Extracting Electric Polarizabilities from Lattice QCD

    Full text link
    Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical background fields to access the polarizabilities from two-point correlation functions. Uniform background fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux. These external fields, however, are implemented only in the valence quark sector. A novel method to extract charge particle polarizabilities is successfully demonstrated for the first time.Comment: 17 pages, 6 figures, a few clarifications added, published versio

    Breakdown of Angular Momentum Selection Rules in High Pressure Optical Pumping Experiments

    Full text link
    We present measurements, using two complementary methods, of the breakdown of atomic angular momentum selection rules in He-broadened Rb vapor. Atomic dark states are rendered weakly absorbing due to fine-structure mixing during Rb-He collisions. The effect substantially increases the photon demand for optical pumping of dense vapors

    Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    Full text link
    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design, and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6-11 fT Hz^(-1/2) single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room.Comment: 15 pages, 5 figure

    Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3_3

    Full text link
    FePS3_3 is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS3 were previously analysed using a straight-forward Heisenberg Hamiltonian with a single-ion anisotropy. The analysis captured most of the elements of the data, however some significant discrepancies remained. The discrepancies were most obvious at the Brillouin zone boundaries. The data are subsequently reanalysed allowing for unequal exchange between nominally equivalent nearest-neighbours, which resolves the discrepancies. The source of the unequal exchange is attributed to a biquadratic exchange term in the Hamiltonian which most probably arises from a strong magnetolattice coupling. The new parameters show that there are features consistent with Dirac magnon nodal lines along certain Brillouin zone boundaries.Comment: 8 pages, 4 figures. The following article has been accepted by the Journal of Applied Physics. After it is published, it will be found at (https://publishing.aip.org/resources/librarians/products/journals/). The article was submitted as part of a special topic edition (https://publishing.aip.org/publications/journals/special-topics/jap/2d-quantum-materials-magnetism-and-superconductivity/
    corecore